
‘\
L&#”

:

b

.,--

.’

,.,

CIRCULATIONCOPY
SUBJECT TO RECALL “

IN TWO WEEKS
UCID_18549

Analysis of a 2-D Code on the CRAY-1

Tim Rudy

February 19, 1980

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

.

I
I

ANALYSIS OF A 2-DCODE ON THE CRAY-I

ABSTRACT

This paper describes the results of the conversion of a 2-D

time dependent finite difference code from a CDC 7600 to the CRAY-1. The

performance improvement, degree of vectorization and output characteristics

on the CRAY-1 are presented.

INTRODUCTION

The recent acquisition of a CRAY-1 by the Liver’moreComputer Center

offered the user community the potential for a significant improvement in

thruput capabilities for application codes developed for the CDC 7600.

This paper describes the performance enhancement, degree of vectori-

zation and output characteristics of a 2-D time dependent finite difference

code on the CRAY-1. Measurements were made of instruction type, vector

length, megaflop rate and

CRAY-1.

The programs can be

Phase 1 is completely exp”

~utput rates for various forms of output on the

viewed as three types of calculational phases.

icit. The second phase is composed of explicit

and implicit equations. In both Phase 1 and 2 a high degree of vectorization

was attained. The third phase is composed of scalar, short vector and long

vector operations.

Comparisons to the 7600 version are somewhat misleading since the 7600

code was completely coded in assembly language, The CRAY-1 version is written

in FORTRAN and uses the CFT [1] compiler, Approximately 300 lines of assembly

code is used on the CRAY-1 for performance improvements to small kernels in

the program.

I

-1-

-2-

INSTRUCTION MIX

●

✌

In Table 1 the instruction mix for a “typical” problem is described.

The problem consisted of 6 energy groups, which dominate Phase 3 calculations,

and a physical grid which is 19 x 63 grid points.

Table 1: Instruction Mix

Phase 1 Phase 2 Phase 3

I (percent)

Distribution of vector operations

Short vector VL=6,7

Medium vector VL=18,19

Long vector VL=62,63

Distribution of floating point operations

Scalar + scalar

Scalar - scalar

Scalar x scalar

l/scalar

Scalar/vector

Scalar x vector

Vector x vector

Vector + vector

Vector - vector

Scalar + vector

Scalar - vector

100

1

2

4

10

33

25

21

4

39

61

1

1

6

8

44

24

3

6

7

85

1

14

7

1

8

35

14

30

4

1

The instruction mix was obtained by enabling the “W” option in the CFT

compiler. This option generates calls to external routines for the various

floating point operations tabulated in Table 1. An assembly language routine

was coded to perform the arithmetic operations and count the number of calls

for each floating point operation.

Although Phase 1 and 2 calculations are highly vectorized the presence

of indirect addressing and data dependencies in Phase 3 calculations reduced

-3-

the degree of vectorization to 85%. Alternate methods are being investigated

to remedy this situation.

Another observation is that the distribution of vector instruction type

is significantly different for Phase 3 calculations versus Phase 1 and 2.

MEGAFLOP RATE

In Table 2 the megaflop rate for the different phases of the code are

described. Floating point divides, square root, exponential and log are each

counted as four floating point operations. Since the code typically subcycles

Phase 3 calculations we normally see five Phase 1 and 2 cycles to every Phase

3 pass. This implies that our average megaflop rate is approximately 11.3.

Table 2: Megaflops

Phase 1 Phase 2 Phase 3

Primitive flops 1.47 E+6 1.45 E+6 9.16 E+6

Square root, exp, log flops .11 E+6 .06 E+6 .07 E+6

Total flops 1.58 E+6 1.51 E+6 9.23 E+6

Compute time (MSEC) 81.4 95.5 1296

Megaflops 19.4 15.8 7*1Z

ASSEM8LYOPTIMIZATION

Approximately

thruput of the CRAY

300 lines of assembly language was written to enhance the

version of the code. The three primary routines written

in assembly language are:

1. EOSTLU -

2. INV -

3. SIG -

gather coefficients for solving the biquadratic equation in

Equation of State calculations.

invert a 6 x 6 or 10 x 10 matrix by Gauss elimination.

performs a dot product on each zone to collapse an array

from 5 dimensions (i,j,k,R,Z) to four dimensions (j,k,R,Z).

This is a short vector operation.

-4-

EOSTLU is used primarily in Phase

dominate the compute time in Phase 3.

The time required to invert 6 x 6

CRAY is presented in Table 3.

Table 3: Matrix

1 and 2 calculations. INV and SIG

and 10 x 10 matrices on the 7600 and

Inverse (USEC)

Size of Matrix 6x6 lox 10

7600 Fortran 379 1483

7600 Assembly 120 507

CRAY Fortran 108 298

CRAY Assembly 31 99

The SIG algorithm is approximately 2.7 times faster in assembly than

vectorized CRAY FORTRAN and 10 to 12 times CRAY FORTRAN scalar.

With the assembly INV and SIG routines 24% of the Phase 3 execution

time is consumed by these two routines. If the vectorized FORTRAN versions

of these routines were used the execution time for Phase 3 would increase

from 1.296 seconds per time step to 1.992 seconds.

All assembly routines have FORTRAN equivalents. By setting a parameter

at compile time programmers may use either version.

CODE OUTPUT

The output generated by this code, controlled by the user, is composed

of:

1. Alphanumeric -

2. Graphics -

3. Binary -

printed output describing the state of the problem in

global, regional and local (e.g., zone) detail.

grid, velocity vector and isoplots are generated for

the full grid and/or subsets of the grid. At problem

termination a set of time history plots are also

provided.

binary files are written to allow the user to restart

the problem, post process the state of the problem or

link to another code. Historically, restart dump fre-

quency was chosen as a function of machine reliability.

-/’

-5-

For a “typical” problem the following measurements were made for a com-

pleted problem:

Table 4: Code Output

Output Type Bits of Output Kilobits/second (KBS)

Alphanumeric 26.5 E+6 16.1

Graphics 62.1 E+6 37.7

Binary 80.4 E+6 48.8

Total 169.0 E+6 102.6

Since this particular code rarely links to another code the frequency of

binary dumps was removed from user control and replaced by the

used since the last dump. Under user control binary dumps were

every 1.5 to 5 minutes on the CRAY.

To permit post processing of a particular calculation the

elapsed time

being written

restart dumps,

selected by the user, were replaced by binary files which contained a reduced

set of output. These files are typically four times smaller than complete

restart dumps.

This change in output generation reduced the binary data output from 80.4

megabits to 19.6 megabits. The output rate was similarly reduced from 102.6 KBS

to 65.7 KBS.

The time used in alphanumeric routines was 1% of the total time used.

Graphics output required approximately 6% of the total execution time. Each

frame of graphics output, on average, required 113000 bits.

If we extrapolate to a future high speed computer which is an order of

magnitude faster than a CRAY-1, the output rate would be 657 KBS. If this

output rate is “typical” for application codes on such a machine a terabit

storage device would be filled in less than 18 days; assuming all output is

stored on a device. Clearly, new methods should be investigated in the pre-

sentation of calculational results to users.

-6-

REFERENCES

[1] CRAY-1 Computer System, reference manual, 2240009, CRAY Research Inc.,
.?

1978.

i

